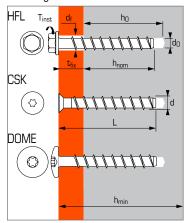


LOGICIEL GRATUIT

LOGICIEL DE CALCUL POUR

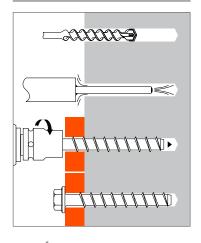
FIXATIONS & SCELLEMENTS D'ARMATURES

TAPCON



APPLICATIONS

Applications pour la pierre silico-calcaire


- Montage de châssis
- Sabot de charpente
- Tasseaux, chevrons
- Étais tirant poussant
- Bandes de couplage
- Barrières de sécurité temporaires
- Coffrages

MATIÈRE

Min. acier galvanisé 5 µm; Résistance minimale à la traction: 700 N/mm²

MÉTHODE DE POSE

Caractéristiques techniques

SIIO	Dimensions	Prof.	d'enfo	ncemen	t min.	Prof.	d'enfor	ncement	max.	Ø file-	Ø per-	Long. totale	Raccord	Ø Anneau	Code
Versions		Prof min.	Épais. max. pièce à fixer	Prof. de perçage	Épais. min. support	Prof. max.	Épais. max. pièce à fixer	Prof. de perçage	Épais. min. support	tage		ancrage			
		(mm) h nom	(mm) t _{fix}	(mm) h o	(mm) h min	(mm) h nom	(mm) t _{fix}	(mm) h ₀	(mm) h min	(mm)	(mm)	(mm)	(mm)	(mm)	
	6X40/5		5			-	-	-	-			40			058729
퍞	6X50/15	35	15	40	100	-	-	-	-	7,5	6	50	SW13	15,3	058730
_	6X80/45-25	00	45	10	100	55	25	60	100	,,0		80	OVVIO	10,0	058731
	6X100/65-45		65			55	45	60	100			100			058732
	8X50/5		5			-	-	-	-			50			058733
	8X60/15		15			-	-	-	-			60			058734
	8X70/25-5		25			65	5	75	120			70			058735
	8X80/35-15	45	35	55	100	65	15	75	120	10,6	8	80	SW13	16,2	058736
	8X100/55-35		55			65	35	75	120			100			058737
	8X120/75-55		75			65	55	75	120			120			058738
	8X140/95-75		95			65	75	75	120			140			058739
굨	10X60/5		5			-	-	-	-			60			058740
	1UX/U/15		15			-	-	-	-			70			058741
	10X90/35-5		35		400	85	5	95	120	400	4.0	90	0.445		058742
	10X100/45-15	55	45	65	120	85	15	95	120	12,6	10	100	SW15	20	058743
	10X120/65-35		65			85	35	95	120			120			058744
	10X140/85-55 10X160/105-75		85 105			85 85	55 75	95 95	120 120			140 160			058745 058746
	12X80/15		15			- 60	-	- 90	120			80			058746
	12X110/45-10	65	45	75	150	100	10	110	150	14,6	12	110	SW17	23,5	058748
				l											
	5X60/25	35	25	40	100	-	-	-	-	6,5	5	60	TX30	11,7	058771
	6X40/5		5			-	-	-	-			40			058772
_	6X60/25-5		25			55	5	60	100			60			058773
5	6X80/45-25	35	45	40	100	55	25	60	100	7,5	6	80	TX30	12,8	058774
	6X100/65-45		65			55	45	60	100			100			058775
	6X120/85-65		85			55	65	60	100			120			058776
	6X140/105-85		105			55	85	60	100			140			058777
	6x40/5 6x60/25-5	35	5	40	100	-	-	-	-	7,5	6	40	TX30	17,5	058783
	6x6U/25-5		25			55	5	60	100			60			058784

MATÉRIEL DE BASE

Éléments CS20

Tapcon en béton: voir autre fiche technique

TESTS PIERRE SILICO-CALCAIRE

Les vis à béton Tapon ont été testées sur la pierre silico-calcaire dans le laboratoire de test approuvé COFRCA CEDRE (Bourges lès Valence, France). Les tests ont été réalisés sur des éléments de différentes épaisseurs de pierres silico-calcaire avec une résistance à la compression minimum de 20 N/mm². Les tests ont révélé que la pierre silico-calcaire peut supporter de bonnes charges à la traction et au cisaillement. Les charges admissibles indiquées dans ce document s'appliquent uniquement à la pierre silico-calcaire massive.

Les tests ont révélé qu'un joint totalement comblé est au moins aussi résistant que le bloc lui-même. Les joints doivent être réalisés avec un bac à colle destiné à cet effet. Les entraxes et distances aux bords, tels que mentionnés dans ce document, sont applicables, si un élément (bloc) n'est pas collé à un autre élément ou bloc.

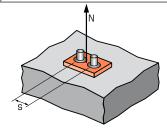
Vis à béton dans la pierre silico-calcaire 2/2

Charges dans la pierre silico-calcaire massive pour un ancrage distinct sans distance aux bords et entraxe en KN

TRACTION

Dimensions	Ø6	Ø8	Ø10	Ø12
h _{min}	100	100	120	150
Prof. d'ancrage min. (h _{ef min})	35	45	55	65
Charge de trac. N _{Rd} (h _{ef min})	2,1	3,8	5,1	6
Prof. d'ancrage max. (h _{ef max})	55	65	85	100
Charge de trac. N _{Rd} (h _{ef max})	4,0	6,3	8,5	10,6

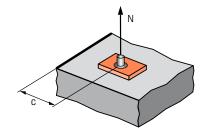
 $N_{RK} = N_{Rd} \times \gamma_{M}$ auquel $\gamma_{M} = 2.5$ $N_{RD} = N_{Rec} \times \gamma_{F}$ auquel $\gamma_{F} = 1.4$


CISAILLEMENT

Dimensions	Ø6	Ø8	Ø10	Ø12
h _{min}	100	100	120	150
Prof. d'ancrage max. (h _{ef max})	55	65	85	100
Charge de cisail. V _{Rd} (h _{ef max})	1,6	4,3	7,0	8,5

 $V_{RK} = V_{Rd} \times \gamma_M$ auquel $\gamma_M = 2.5$

 $V_{RD} = V_{Rec} \times \gamma_F$ auquel $\gamma_F = 1,4$


$\Psi_\mathtt{S}$ Influence de l'entraxe en cas de charge de traction dans la pierre silico-calcaire

 Ψ_{S} doit être utilisé pour chaque distance qui affecte le groupe.

ENTRAXE S				ent de réduction Ψ_{s} rre silico-calcaire
Dimensions	Ø6	Ø8	Ø10	Ø12
60	1,00			
80		0,60		
100		0,68	0,80	
120		0,76	0,83	0,80
140		0,84	0,86	0,83
160		0,92	0,89	0,85
180		1,00	0,91	0,88
200			0,96	0,91
250			1,00	0,95
300				1,00

$\Psi_{\text{c,N}}$ influence de la distance aux bords en cas de charge de traction dans la pierre silico-calcaire

 $\Psi_{\text{c},\text{N}}$ doit être utilisé pour chaque distance qui affecte le groupe.

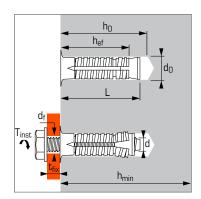
BORD C

Dimensions	Ø6	Ø8	Ø10	Ø12
40	1,00			
55		0,60		
60		0,64	0,80	
75		0,78	0,84	0,80
85		0,87	0,87	0,83
90		0,91	0,89	0,85
100		1,00	0,91	0,88
115			0,96	0,92
130			1,00	0,97
140				1,00

Ψ_{c,V} INFLUENCE DE LA DISTANCE AUX BORDS EN CAS DE CHARGE DE CISAILLEMENT DANS LA PIERRE SILICO-CALCAIRE

 $\Psi_{\text{c,V}}$ doit être utilisé pour chaque distance qui affecte le groupe.

BORD C

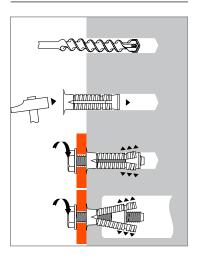

Dimensions	Ø6	Ø8	Ø10	Ø12
40	0,60			
55	0,80	0,60		
60	0,84	0,66	0,60	
75	0,96	0,83	0,69	0,60
80	1,00	0,89	0,71	0,63
85		0,94	0,74	0,65
90		1,00	0,77	0,68
100			0,83	0,73
130			1,00	0,89
150				1,00

Cheville métallique universelle à grande expansion, pour béton, maçonneries pleines et creuses

APPLICATION

- Portes industrielles
- Rayonnages pour stockage
- Panneaux indicateurs
- Volets de sécurité
- Poteaux de clôtures et portails
- Escaliers

MATIÈRE


Douille: S300Pb NFA 35561Cône d'expansion: S300Pb NFA 35561

Vis: classe 8.8 NF EN 20898-1Rondelle: Fe 360, NF EN 10025Protection: Zingage NFE 25009,

 Protection: Zingage NFE 25009 passivation NFA 91472

Dis	tance bord 8. de la pierı							
	C _{min} S _{min}							
M6	75	120						
M8	95	145						
M10	115	175						
M12	135	195						

MÉTHODE DE POSE

Caractéristiques techniques

Dimensions	Prof.	Epaisseur	Ø	Profondeur	Ø	Epaisseur	Ø	Longueur	Couple de serrage maxi.		e maxi.	Code
	ancrage	maxi.	filetage	perçage	perçage	mini.	passage	totale		ton	brique	
	min.	à fixer				support		cheville	vis 5.8	vis 8.8		
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	(Nm)	(Nm)	
	h _{ef}	t _{fix}	d	h ₀	do	h _{min}	df	L	T _{inst}	T _{inst}	T _{inst}	
Cheville seule												
M6X50	37	-	M6	60	12	100	8	50	8	10	5	050399
M8X55	42	-	M8	65	14	100	10	55	15	25	7,5	050401
M10X65	52	-	M10	75	16	100	12	65	30	50	13	050402
M12X80	62	-	M12	90	20	125	14	80	50	80	23	073560
Cheville Type B	Cheville Type B (livrée avec vis classe 8.8 et rondelle prémontée)											
M6X50/10 B	37	10	M6	60	12	100	8	60		10	5	050404
M6X50/25 B	3/	25	IVIO	00	16	100	0	70	-	10	J	050405
M8X55/10 B		10						60				050406
M8X55/25 B	42	25	M8	65	14	100	10	80	-	25	7,5	050407
M8X55/40 B		40						90				050408
M10X65/10 B		10						75				073640
M10X65/25 B	52	25	M10	75	16	100	12	90	-	50	13	073650
M10X65/50 B		50						110				073660
M12X80/10 B	62	10	M12	90	20	125	14	90		80	23	073680
M12X80/25 B	٥٤	25	IVITZ	90	20	ובט	14	110	-	OU	دی	073690

Propriétés mécaniques des chevilles

Dimension	S	M6	M8	M10	M12
Vis classe 5.8	}				
f _{uk} (N/mm²)	Résistance à la traction min.	520	520	520	520
f _{yk} (N/mm²)	Limite d'élasticité	420	420	420	420
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	7,9	19,5	38,9	68,1
M (Nm)	Moment de flexion admissible	3,2	7,8	15,6	28,4
Vis classe 8.8	3				
f _{uk} (N/mm ²)	Résistance à la traction min.	800	800	800	800
f _{yk} (N/mm ²)	Limite d'élasticité	640	640	640	640
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	12,2	30,0	59,8	104,8
M (Nm)	Moment de flexion admissible	5,0	12,4	24,8	43,7
As (mm ²)	Section résistante	20,1	36,6	58	84,3
W el (mm ²)	Module d'inertie en flexion	12,7	31,2	62,3	109,2

Charges recommandées (N_{rec}, V_{rec}) dans maçonneries en kN

TRACTION

INACTION									
Dimensions Supports	M6	M8	M10	M12					
Briques terre cuite	tradition	nelles BP 3	00 (fc > 30) N/mm ²)					
N _{rec}	1,9	2,4	3,0	3,0					
Briques terre cuit	e (fc = 1	1 N/mm ²)							
N _{rec}	0,7	1,1	1,1	2,0					
Blocs en béton pleins B 120 (fc = 13,5 N/mm ²)									
N _{rec}	0,4	0,95	1,25	1,9					
Briques terre cuit	e creuse:	s non endu	ites						
N _{rec}	0,15	0,15	*	*					
Blocs en béton cre	eux non e	nduits							
N _{rec}	0,2	0,2	*	*					
Blocs en béton cre	ux endui	ts							
N _{rec}	1,25	1,75	1,85	2,2					
Pierre silico-calca	ire CS12								
N _{rec}	1,6	2,1	3,2	4,0					
*utilsation déconseil	llée								

*utilsation déconseillée $\gamma_M = 2.5$ en $\gamma f = 1.4$

CISAILLEMENT

0.0				
Dimensions Supports	M6	M8	M10	M12
Briques terre cuite	tradition	nelles BP 30	10 (fc > 30) N/mm ²)
$V_{ m rec}$	1,0	1,9	3,0	4,4
Briques terre cuito	e (fc = 1	1 N/mm ²)		
V _{rec}	0,85	1,9	3,0	4,4
Blocs en béton ple	ins B 12	0 (fc = 13,	5 N/mm ²)
V _{rec}	0,5	1,75	2,2	3,15
Briques terre cuito	e creuse	s non endu	ites	
V _{rec}	0,5	0,5	*	*
Blocs en béton cre	eux non e	nduits		
V _{rec}	0,8	0,8	*	*
Blocs en béton cre	ux endui	its		
V _{rec}	1,6	2,0	2,5	3,0
Pierre silico-calca	ire CS12			
V _{rec}	1,6	2,1	3,2	4,0
*	11.7			

^{*}utilsation déconseillée

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

Dimensions Vis classe 5.8	M6	M8	M10	M12
h _{ef}	37	42	52	62
N _{Ru,m}	11,6	18,7	28,5	36,1
N _{Rk}	10,4	14	21,4	27,1
Vis classe 8.8				
h _{ef}	37	42	52	62
N _{Ru,m}	14,4	18,7	28,5	36,1
N _{Rk}	10,8	14	21,4	27,1

CISAILLEMENT

Dimensions	M6	M8	M10	M12
Vis classe 5.8				
V _{Ru,m}	6,2	11,4	18,1	26,3
V _{Rk}	5,2	9,5	15,1	21,9
Vis classe 8.8				
$V_{Ru,m}$	9,7	17,5	27,8	39,6
V _{Rk}	8,1	14,6	23,2	33,0

Charges limites ultimes (N_{Rd} , V_{Rd}) pour une cheville en pleine masse en kN

$$N_{Rd} = \frac{N_{Rk} *}{N_{Max}}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$

TRACTION

Dimensions Vis classe 5.8	M6	M8	M10	M12
h _{ef}	37	42	52	62
N _{Rd}	5,0	6,7	10,2	12,9
Vis classe 8.8				
h _{ef}	37	42	52	62
N _{Rd}	5,1	6,7	10,2	12,9

CISAILLEMENT

Dimensions Vis classe 5.8	M6	M8	M10	M12
V _{Rd}	4,2	7,6	12,1	17,5
Vis classe 8.8				
V_{Rd}	6,5	11,7	18,6	26,4

 $\gamma_{Ms} = 1,25$

$\gamma_{Mc} = 2,1$

Charges recommandées (Nrec, Vrec) pour une cheville en pleine masse en kN

$$N_{rec} = \frac{N_{Rk} *}{v_{NA} v_{E}}$$

*Valeurs issues d'essais

V	_	V _{Rk} *		
A Lec	_	ΥМ. ΥΕ		

TRACTION

Dimensions Vis classe 5.8	M6	M8	M10	M12
h _{ef}	37	42	52	62
N _{rec}	3,5	4,8	7,3	9,2
Vis classe 8.8				
h _{ef}	37	42	52	62
N _{rec}	3,7	4,8	7,3	9,2

 $\gamma_F = 1,4 \; ; \; \gamma_{Mc} = 2,1$

CISAILLEMENT

Dimensions Vis classe 5.8	M6	M8	M10	M12
V _{rec}	2,5	4,5	7,2	10,4
Vis classe 8.8				
V _{rec}	4,6	8,3	13,3	18,9

 $\gamma_F = 1.4$; $\gamma_{Ms} = 1.5$ pour vis classe 5.8 et $\gamma_{Ms} = 1.25$ pour vis classe 8.8

Charges recommandées (Nrec, Vrec) dans dalles alvéolaires en kN

Dimensions	Dalles alvéolaires TYPE DSL 20* (épaisseur de paroi : 20 mm)			
	N _{rec} V _{rec}			
Qualité de vis acier mini	5.8	5.8	8.8	
PRIMA M6	2,5	1,40	2,10	
PRIMA M8	2,75	2,50	3,90	
PRIMA M10	3,00	4,00	6,20	

*Marque kp1 (fournisseur de dalles alvéolaires)

Comportement au feu

Résistance au feu à l'état limite ultime (kN) (avec vis electro-galvanisées, classe ≥ 5.8)

Limite d'exposition F _{Rdu,fi}	30 min.	1 h	1 h 30 min.	2 h
M8	1,09	0,89	0,68	0,58
M10	1,21	1,12	1,04	1
M12	1,21	1,12	1,04	1

SPIT Méthode CC

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p} = N^{0}_{Rd,p}$$
 . f_b

N ^O Rd,p	Résistance à l'ELU - rupture extraction-glissement			
Dimensions	M6	M8	M10	M12
h _{ef}	37	42	52	62
N⁰_{Rd,p} (C20/25)	5,0	-	-	-

 $\gamma_{Mc} = 2,1$

¬ Résistance à la rupture cône béton

$$N_{\text{Rd,c}} = N^0_{\text{Rd,c}}$$
 . f_b . Ψ_{s} . $\Psi_{\text{c,N}}$

N ^O Rd,c	Résistance à l'ELU - rupture cône béton			
Dimensions	M6	M8	M10	M12
h _{ef}	37	42	52	62
N⁰_{Rd,c} (C20/25)	5,4	6,5	9,0	11,7

 $\gamma_{Mc} = 2,1$

¬ Résistance à la rupture acier

N _{Rd,s}	Rd,s Résistance à l'ELU - rupture ac i			
Dimensions	M6	M8	M10	M12
Vis classe 5.8				
N _{Rd,s}	4,0	7,3	11,6	16,9
Vis classe 8.8				
N _{Rd,s}	5,1	9,2	14,5	21,1

 $\gamma_{Ms}=~1,5$

¬ Résistance à la rupture béton en bord de dalle

$$V_{\text{Rd},c} = V^0_{\text{Rd},c}$$
 . f_b . $f_{\beta,\text{V}}$. $\Psi_{\text{S-C},\text{V}}$

V ⁰ Rd,c	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})				
Dimensions	M6 M8 M10 M12				
h _{ef}	37	42	52	62	
C _{min}	50	55	60	65	
Smin	60	70	80	110	
V⁰_{Rd,c} (C20/25)	3,2	4,0	4,9	6,2	

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture par effet de levier

$$V_{\text{Rd,cp}} = V^0_{\text{Rd,cp}}$$
 . f_b . Ψ_{s} . $\Psi_{\text{c,N}}$

V ⁰ Rd,cp	Résistance à l'ELU - rupture par effet levi								
Dimensions	M6	M8	M10	M12					
h _{ef}	37	42	52	62					
V⁰_{Rd,cp} (C20/25)	7,6	9,1	12,6	32,8					

 $\gamma_{Mcp} = 1,5$

¬ Résistance à la rupture acier

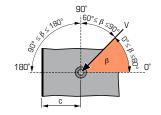
$V_{Rd,s}$	Résistance à l'ELU - rupture aci							
Dimensions	M6	M8	M10	M12				
Vis classe 5.8								
$V_{Rd,s}$	4,2	7,6	12,1	17,5				
Vis classe 8.8								
$V_{Rd,s}$	6,5	11,7	18,6	26,4				

 $\gamma_{Ms}=~1,25$

$$\begin{split} N_{Rd} &= min \text{($N_{Rd,p}$; $N_{Rd,c}$; $N_{Rd,s}$)} \\ \beta_N &= N_{Sd} \ / \ N_{Rd} \le 1 \end{split}$$

$$\begin{split} V_{Rd} &= min \text{($V_{Rd,c}$; $V_{Rd,cp}$; $V_{Rd,s}$)} \\ \beta_V &= V_{Sd} \ / \ V_{Rd} \le 1 \end{split}$$

 $\beta_N + \beta_V \le 1.2$

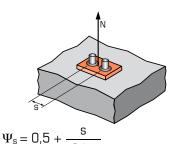

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

 $f_{\beta,V}$

INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT

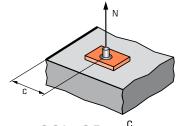
Angle β [°]	$f_{\beta,V}$
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2



Coefficient de réduction $\Psi_{\text{s-c,V}}$

SPIT Méthode CC

$\Psi_{ m s}$ influence de l'entraxe sur la charge de traction pour la rupture cone beton

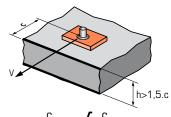

 $S_{min} < S < S_{cr,N}$

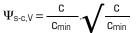
s_{cr,N} = 3.h_{ef} Ψ_s doit être utilisé nour ch

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

ENTRAXE S			Coefficient de Bétor	réduction Ψs n non fissuré
Dimensions	M6	M8	M10	M12
60	0,77			
70	0,82	0,78		
80	0,86	0,82	0,76	
90	0,91	0,86	0,79	
100	0,95	0,90	0,82	
110	1,00	0,94	0,85	0,80
125		1,00	0,90	0,84
155			1,00	0,92
185				1,00

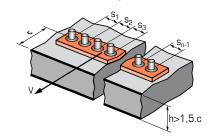
$\Psi_{c,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON


$$\Psi_{c,N} = 0.24 + 0.5 \cdot \frac{c}{h_{ef}}$$


$$\begin{split} c_{min} < c < c_{cr,N} \\ c_{cr,N} = 1, 5. h_{ef} \end{split}$$

 $\Psi_{\text{c,N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.

DISTANCES AUX BORDS C		Coefficient de ro	éduction Ψ _{c,N} 1 non fissuré	
Dimensions	M6	M8	M10	M12
50	0,92			
55	0,98	0,89		
60	1,00	0,95	0,82	
65		1,00	0,87	0,76
80			1,00	0,89
95				1,00


$\Psi_{ ext{s-c,V}}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE CISAILLEMENT POUR LA RUPTURE BORD DE DALLE

h>1,5.c

$$\Psi_{\text{S-C,V}} = \frac{3.\text{c} + \text{s}}{6.\text{Cmin}} \cdot \sqrt{\frac{\text{c}}{\text{Cmin}}}$$

¬ Cas d'une cheville unitaire

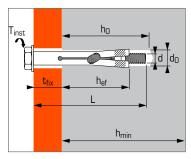
												fissuré
C C _{min}	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{\text{s-c,V}}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

									Coe	fficient d B	e réductio éton non	
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

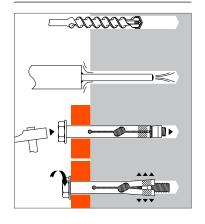
¬ Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, s_1 \, + \, s_2 \, + \, s_3 \, + \ldots + \, s_{\text{n-1}}}{3.n.c_{\text{min}}} \, . \sqrt{\frac{c}{c_{\text{min}}}}$$


050262

DYNABO

Cheville à expansion pour béton, maçonneries pleines et dalles alvéolaires


M12X110/50 HB

APPLICATION

- Plaques murales
- Auvents
- Panneaux indicateurs
- Cornières, garde-corps

MÉTHODE DE POSE

Caractérist	Caractéristiques techniques										
Dimensions	Prof. d'ancrage min. (mm)	à fixer (mm)	Ø filetage (mm)	Prof. de perçage	Ø perçage (mm)	Epaisseur mini. support (mm)	Longueur totale cheville (mm)	Couple de serrage (Nm)	Code		
M6X70/30 HB	h _{ef}	t _{fix}	d 6	45	do 8	h _{min} 55	1 70	T _{inst}	050253		
M8X55/10 HB	28	8	 	50	10	65	55	50	050255		
M8X80/35 HB	34	35	8	50	10	65	80	20	050256		
M8X105/60 HB	34	62	8	50	10	65	105	20	050257		
M10X65/10 HB	44	12	10	65	12	80	65	40	050258		
M10X75/20 HB	44	18	10	65	12	80	75	40	050259		
M10X105/45 HB	44	46	10	65	12	80	105	40	050260		

Propriétés mécaniques des chevilles

Dimension	ıs	M6	M8	M10	M12
Partie filetée					
fuk (N/mm²)	Résistance à la traction min.	600	600	600	600
fyk (N/mm ²)	Limite d'élasticité	480	480	480	480
W el (mm ³)	Module d'inertie en flexion	12,7	31,2	62,3	109,2
M ⁰ rk,s (Nm)	Moment de flexion caractéristique	9,15	22,5	44,8	72
M (Nm)	Moment de flexion admissible	4,5	11,2	22,4	36,0
	Classe de boulon	6.8	6.8	6.8	6.8
SW (mm)	Taille de la clef	10	13	17	19

Charges limites ultimes (N_{Rd}, V_{Rd}) dans les dalles alvéolaires en kN

Dalle alvéolaire	Distance aux bords > 200	mm Entraxe mini: 125 mm
(épaisseur de paroi : 30 mm)	N _{Rd}	V _{Rd}
Dynabold M10	6.7	6.7

 $\gamma_M = 2,1$

REDUCTIEFACTOR RANDAFSTAND HB M10

Distance aux bords C	Reduction*	Charge sur S > 125 mm (Nd, Vd)
50	0,6	4,02
75	0,64	4,29
100	0,68	4,56
125	0,75	5,03
150	0,8	5,36
175	0,9	6,03
200	1	6,7

S'il y a une réduction à C et à S, multipliez les deux facteurs de réduction.

REDUCTIEFACTOR HARTAFSTAND HB M10

Entraxe S	Reduction*	Charge sur C > 200 mm (Nd, Vd)
75	0,77	5,15
85	0,8	5,36
95	0,84	5,62
105	0,88	5,89
115	0,95	6,36
125	1	6,7

S'il y a une réduction à C et à S, multipliez les deux facteurs de réduction.

Les valeurs pour les dalles alvéolées sont dérivées d'essais réalisés sur des dalles alvéolées VBI 200 et VBI 260 avec une qualité de béton C45/55. Des essais de traction et de cisaillement ont été réalisés en tenant compte de la position de l'ancrage dans le sol (sens de l'extrémité et de la longueur). Les tests ont montré que les ancrages placés dans les canaux donnent au moins les mêmes résultats que les ancrages dans les barrages. Cependant, il est important de respecter le couple spécifié et le fait de travailler avec une clé à chocs près du bord peut avoir un effet néfaste sur la charge admissible. Les charges peuvent être interpolées linéairement si la distance au bord s'écarte des distances ci-dessus. Pour plus d'informations sur Dynabolt HB M10 dans les dalles creuses, veuillez contacter le service technique de SPIT.

DYNABOLT

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Charges moyennes de ruine ($N_{Ru,m}$, $V_{Ru,m}$)/résistances caractéristiques (N_{Rk} , V_{Rk}) en kN

Les charges moyennes de ruine et les résistances caractéristiques sont issues des résultats d'essais dans les conditions admissibles d'emploi.

TRACTION

Dimensions h _{ef}	M6 30	M8 34	M10 44	M12 46
N _{Ru,m}	7,6	10,8	17,2	18,2
N _{Rk}	5,7	8,1	12,9	13,7

CISAILLEMENT

Dimensions	M6	M8	M10	M12
$V_{Ru,m}$	7,3	13,2	20,9	30,4
V _{Rk}	6,1	11,0	17,4	25,3

Charges dans le béton pour un ancrage individuel sans bord ni entraxe en kN

$$N_{Rd} = \frac{N_{Rk} *}{\gamma_{Mc}}$$
 $N_{rec} = \frac{N_{Rk} *}{\gamma_{M.} \gamma_{F}}$

*Valeurs issues d'essais

$$V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$$
 $V_{rec} = \frac{V_{Rk} *}{\gamma_{M.\gamma F}}$

TRACTION

Dimensions	M6	M8	M10	M12
h _{ef}	30	34	44	46
N _{Rd}	2,7	3,9	6,1	6,5
Nrec	1.9	2.8	4.4	4.7

$$\gamma_F = 1.4 \; ; \; \gamma_{Mc} = 2.1$$

CISAILLEMENT

V _{Rd} 3,8 6,9 10,9 15,8 V _{rec} 2.7 4.9 7.8 11.3	Dimensions	M6	M8	M10	M12
V _{rec} 2.7 4.9 7.8 11.3	V_{Rd}	3,8	6,9	10,9	15,8
-100	V _{rec}	2,7	4,9	7,8	11,3

$$\gamma_F = 1.4 \; ; \; \gamma_{Ms} = 1.6$$

Charges dans les pierres silico-calcaires CS12

$$N_{Rd} = \frac{N_{Rk} \ ^*}{\gamma_{Mc}} \quad \ N_{rec} = \frac{N_{Rk} \ ^*}{\gamma_{M..} \gamma_F}$$

*Valeurs issues d'essais

$$V_{Rd} = \frac{\left. V_{Rk} \right.^*}{\gamma_{Ms}} \qquad V_{rec} = \frac{\left. V_{Rk} \right.^*}{\gamma_{M..} \gamma_F}$$

TRACTION

Dimensions	M6	M8	M10	M12
h _{ef}	30	34	44	46
N _{Rd}	2,5	2,8	3,6	3,9
N _{rep}	1,8	2,0	2,6	2,8

 $\gamma_{\rm M} = 2.5$; $\gamma_{\rm f} = 1.4$

CISAILLEMENT

Dimensions	M6	M8	M10	M12
V_{Rd}	2,5	2,8	3,6	3,9
V_{rep}	1,8	2,0	2,6	2,8

Charges dans les briques BP 400 (fc > 40 N/mm²) in kN

TRACTION

Dimensions	M6	M8	M10	M12
h _{ef}	30	34	44	46
N _{Rd}	2,2	2,9	3,3	3,6
N _{rec}	1,6	2,0	3,7	4,2

 $\gamma_M=2.1$; $\gamma_{Mc}=1.6$

CISAILLEMENT

Dimensions	M6	M8	M10	M12
V_{Rd}	2,8	5,1	8,1	11,8
V _{rec}	2,0	3,6	5,7	8,4

Distance entre le bord et le centre de la pierre

	C _{min}	S _{min}
M6	50	60
M8	60	70
M10	75	80
M12	80	100

SPIT Méthode CC

TRACTION en kN

¬ Résistance à la rupture extraction-glissement

$$N_{Rd,p}=N^0_{Rd,p}$$
 . f_b

N ^O Rd,p		Résistance à l'ELU - rupture extraction-glissement			
Dimension	าร	M6	M8	M10	M12
h _{ef}		30	34	44	46
$N^{O}_{Rd,p}$	(C20/25)	2,7	3,9	6,1	6,5

 $\gamma_{Mc} = 2,1$

CISAILLEMENT en kN

¬ Résistance à la rupture béton en bord de dalle

DYNABO

$$V_{\text{Rd,c}} = V^0_{\text{Rd,c}}$$
 . f_b . $f_{\beta,\text{V}}$. $\Psi_{\text{S-C,V}}$

V ⁰ Rd,c	Résistance à	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})			
Dimensio	ns M6 M8 M10 M12				
h _{ef}		30	34	44	46
C _{min}		50	60	75	100
Smin		50	60	70	90
V ⁰ Rd,c	(C20/25)	2,7	3,9	6,1	10,4

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture cône béton

$$N_{Rd,c} = N_{Rd,c}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

N ^O Rd,c		Résis	stance à l'El	.U - rupture	cône béton			
Dimensio	ns	M6 M8 M10 M12						
h _{ef}		30	34	44	46			
N ^O Rd,c	(C20/25)	3,9	4,8	7,0	7,5			

 $\gamma_{Mc} = 2.1$

¬ Résistance à la rupture par effet de levier

$$V_{\text{Rd,cp}} = V_{\text{Rd,cp}}^0$$
 . f_{b} . Ψ_{s} . $\Psi_{\text{c,N}}$

$V_{Rd,cp}$		Résistan	Résistance à l'ELU - rupture par effet levier							
Dimensio	ons	M6 M8 M10 M12								
h _{ef}		30	34	44	46					
$V^0_{Rd,cp}$	(C20/25)	5,5	6,7	9,8	10,5					

 $\gamma_{Mcp} = 1,5$

¬ Résistance à la rupture acier

$N_{Rd,s}$	N _{Rd,s} Résistance à l'ELU - ruptur									
Dimensions	M6	M8	M10	M12						
$N_{Rd,s}$	6,3	11,5	18,1	26,4						

 $\gamma_{Ms}=2\,$

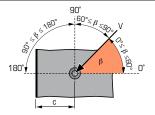
¬ Résistance à la rupture acier

$V_{Rd,s}$	Résistance à l'ELU - ruptur							
Dimensions	M6	M8	M10	M12				
$V_{Rd,s}$	3,8	6,9	10,9	15,8				

 $\gamma_{Ms} = 1.6$

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$ $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$

 $\beta_{N} + \beta_{V} \le 1,2$

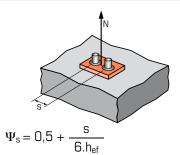

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b	Classe de béton	f _b
C25/30	1,1	C40/50	1,41
C30/37	1,22	C45/55	1,48
C35/45	1,34	C50/60	1,55

 $f_{\beta,V}$

INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT

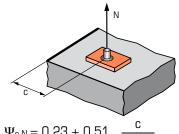
Angle β [°]	f _{β,V}
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2



Coefficient de réduction $\Psi_{\text{s-c,V}}$

SPIT Méthode CC

INFLUENCE DE L'ENTRAXE SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON

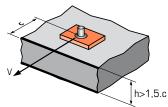


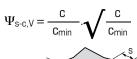
 $s_{min} < s < s_{cr,N}$ $s_{cr,N} = 3.h_{ef}$

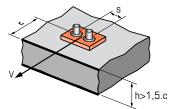
 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

ENTRAXE S			Coefficient de Béto	réduction Ψs n non fissuré
Dimensions	M6	M8	M10	M12
50	0,78			
60	0,83	0,80		
70	0,89	0,85	0,77	
80	0,94	0,90	0,80	
90	1,00	0,95	0,84	0,83
100		1,00	0,88	0,86
120			0,95	0,93
130			1,00	0,97
140				1,00

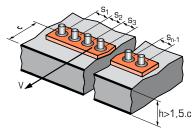
$\Psi_{c,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON


	-
$\Psi_{c,N} = 0.23 + 0.51$.	С
1 C,N = 0,L0 1 0,01 .	hof


 $c_{min} < c < c_{cr,N}$ $c_{cr,N} = 1,5.h_{ef}$


 $\Psi_{\text{c.N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.

DISTANCES AUX BORDS C		Coefficient de r	éduction Ψ _{c,N} n non fissuré	
Dimensions	M6	M8	M10	M12
50	1,00			
60		1,00		
75			1,00	
100				1,00


$\Psi_{ ext{s-c,V}}$ influence de la distance aux bords sur la charge de cisaillement pour la rupture bord de dalle

$$\Psi_{\text{s-c,V}} = \frac{3.c + s}{6.c_{\text{min}}}.\sqrt{\frac{c}{c_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

											éton non	
$\frac{C}{C_{min}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{\text{s-c,V}}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

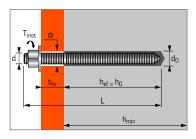
¬ Cas d'un groupe de 2 chevilles

									Coe		e réduction éton non	
S Cmin	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

¬ Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, s_1 \, + \, s_2 \, + \, s_3 \, + \ldots + \, s_{\text{n-1}}}{3.n.c_{\text{min}}} \, . \sqrt{\frac{c}{c_{\text{min}}}}$$

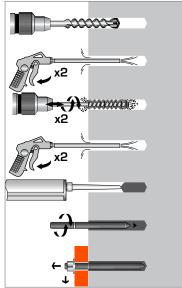
VIPER XTREM


1/2 Tiges filetées dans la pierre silico-calcaire

APPLICATIONS

- Fixation de charpentes métalliques
- Fixation de machines (résiste aux vibrations)
- Fixation de silos de stockage, supports de tuyauteries
- Fixation de panneaux indicateurs
- Fixation de barrières de sécurité
- Fixation électrique isolante

MATIÈRE


Tige filetée version zinguée:

- Tige filetée M8-M16:
- Acier faconné à froid NF A35-053
- Ecrou: Acier classe 6 ou 8 NF EN 20898-2
- Rondelle: Acier DIN 513
 Protection: zinguée 5 µm min.
- NF E25-009

Tige filetée version inox:

- Tige filetée: A4-70 selon ISO 3506-1
- Ecrou: Acier inoxydable A4-80, NF EN 10088-3
- Rondelle: Acier inoxydable A4, NF EN 20898-2

MÉTHODE DE POSE*

*Nettoyage Premium:

- 2 aller-retour de soufflage à l'air comprimé
- 2 aller-retour de brossage avec écouvillon sur mandrin
- 2 aller-retour de soufflage à l'air comprimé

Caractéristiques techniques

Dimensions	Prof. ancrage	Épais. pièce à fixer	Prof. ancrage	Épais. pièce à fixer	Prof. ancrage	Épais. pièce à fixer	Épais. min. support	Ø filetage	Prof. perçage	Ø perçage	Ø passage	Long. totale ancrage
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
	h _{ef min}	t _{fix min}	h _{ef std}	t _{fix std}	h _{ef max}	t _{fix max}	h _{min}	d	ho	do	df	L
M8X110	50	45	65	30	80	15	110	8	80	10	9	110
M10X130	60	50	75	35	90	20	120	10	90	12	12	130
M12X160	70	65	90	45	110	25	140	12	110	14	14	160
M16X190	90	70	105	55	125	35	160	16	125	18	18	190
L'épaisseur d	de serrage	L'épaisseur de serrage de T _{fix} s'applique à la tige d'ancrage SPIT de longueur standard										

Dimensions	Longueur totale de l'ancrage	Couple de serrage max.		de* ïletée
	(mm) L	(Nm) T inst	version zinguée	version inox A4
M8X110	110	10	060215	060222
M10X130	130	20	060216	060223
M12X160	160	30	060217	060224
M16X190	190	60	060218	060225
VIPER Résine vinylester, o	cartouche à deux comp	060	187	
VIPER Résine vinylester, cartouche à deux composants 410 ml 060189				

^{*}Tiges filetées, pour les versions standards consulter notre catalogue

Propriétés mécaniques des chevilles

Dimension	is	M8	M10	M12	M16
Tige filetée v	ersion zinguée				
f _{uk} (N/mm ²)	Résistance à la traction min	600	600	600	600
fyk (N/mm²)	Limite d'élasticité	420	420	420	420
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	22	45	79	200
M (Nm)	Moment de flexion admissible	11,0	22,5	39,5	100
Tige filetée version inox A4					
fuk (N/mm²)	Résistance à la traction min	700	700	700	700
fyk (N/mm²)	Limite d'élasticité	350	350	350	350
M ⁰ _{rk,s} (Nm)	Moment de flexion caractéristique	26	52	92	233
M (Nm)	Moment de flexion admissible	12	23	42	122
As (mm ²)	Section résistante	36,6	58	84,3	157
W _{el} (mm ³)	Module d'inertie en flexion	31,2	62,3	109,2	277,5

Temps de prise avant application d'une charge

Température	Temps max. de manipulation	Temps d'attente avant polymérisation complète
-10°C ▶-5°C	90 min.	24 h
-4°C ► 0°C	50 min.	240 min.
1°C ► 5°C	25 min.	120 min.
6°C ► 10°C	15 min.	90 min.
11°C ► 20°C	7 min.	60 min.
21°C ► 30°C	4 min.	45 min.
31°C ► 40°C	2 min.	30 min.

TESTS PIERRE SILICO-CALCAIRE

Les ancrages chimique ont été testées sur la pierre silico-calcaire dans le laboratoire de test approuvé COFRCA CEDRE (Bourges lès Valence, France). Les tests ont été réalisés sur des éléments de différentes épaisseurs de pierres silico-calcaire avec une résistance à la compression minimum de 20 N/mm². Les tests ont révélé que la pierre silico-calcaire peut supporter de bonnes charges à la traction et au cisaillement. Les charges admissibles indiquées dans ce document s'appliquent uniquement à la pierre silico-calcaire massive.

Les tests ont révélé qu'un joint totalement comblé est au moins aussi résistant que le bloc lui-même. Les joints doivent être réalisés avec un bac à colle destiné à cet effet. Les entraxes et distances aux bords, tels que mentionnés dans ce document, sont applicables, si un élément (bloc) n'est pas collé à un autre élément ou bloc.

Tiges filetées dans la pierre silico-calcaire 2/2

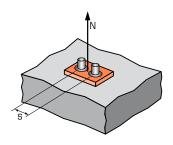
Charges dans la pierre silico-calcaire massive pour un ancrage distinct sans distance aux bords et entraxe

TRACTION

Dimensions	M8	M10	M12	M16
Prof. d'ancrage min. h _{min}	50	60	70	90
Charge de trac. N _{Rd} (h _{ef,min})	3,6	5,5	7,7	10,9
Prof. d'ancrage h _{ef std}	65	75	90	105
Charge de trac. N _{Rd} (h _{ef std})	4,8	6,9	9,9	12,7
Prof. d'ancrage h _{ef max}	80	90	110	125
Charge de trac. N _{Rd} (h _{ef max})	5,9	8,1	12,2	15,2

 $N_{RK} = N_{Rd} \times \gamma_M$ auquel $\gamma_M = 2.5$ (M8 - M12) & $\gamma_M = 3$ (M16)

 $N_{RD} = N_{Rec} \times \gamma_F$ auquel $\gamma_F = 1.4$


CISAILLEMENT

Dimensions	M8	M10	M12	M16
Prof. d'ancrage min. h _{min}	50	60	70	90
Charge de cisail. V _{Rd} (h _{ef,min})	2,9	4,9	5,6	6,5
Prof. d'ancrage h _{ef std}	65	75	90	105
Charge de cisail. V_{Rd} ($h_{ef\ std}$)	4,3	5,6	7,6	10,2
Prof. d'ancrage h _{ef max}	80	90	110	125
Charge de cisail. V _{Rd} (h _{ef max})	4,3	7,3	10,1	14,0

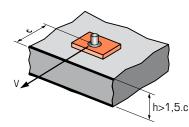
 $V_{RK} = V_{Rd} \times \gamma_M$ auquel $\gamma_M = 2.5$

 $V_{RD} = V_{Rec} \times \gamma_F$ auquel $\gamma_F = 1,4$

■ INFLUENCE DE L'ENTRAXE SUR LA CHARGE DE TRACTION DANS LA PIERRE SILICO-CALCAIRE

 Ψ_{S} doit être utilisé pour chaque distance qui affecte le groupe.

ENTRAXE S				ent de réduction $\Psi_{ extsf{s}}$ rre silico-calcaire
Dimensions	M8	M10	M12	M16
100	0,60			
120	0,68	0,6		
140	0,76	0,67	0,6	
180	0,92	0,80	0,71	0,60
200	1	0,87	0,77	0,64
240		1	0,89	0,73
280			1	0,82
300				0,87
330				0,93
360				1


$\Psi_{c,N}$ INFLUENCE DE LA DISTANCE AUX BORDS SUR LA CHARGE DE TRACTION DANS LA PIERRE SILICO-CALCAIRE

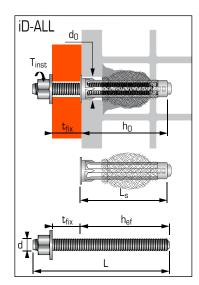
 $\Psi_{\text{c,N}}$ doit être utilisé pour chaque distance qui affecte le groupe.

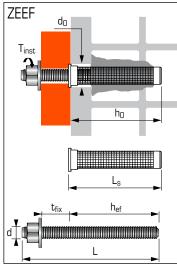
BORD C			it de réduction Ψ _{c,N} erre silico-calcaire	
Dimensions	M8	M10	M12	M16
50	0,60			
60	0,68	0,6		
70	0,76	0,66	0,6	
80	0,84	0,71	0,66	0,60
90	0,92	0,77	0,71	0,64
100	1,00	0,83	0,77	0,68
130		1,00	0,94	0,80
140			1,00	0,84
160				0,92
180				1,00

$\Psi_{\text{c,V}}$ Influence de la distance aux bords sur la charge de cisaillement dans la pierre silico-calcaire

 $\Psi_{ extsf{cv}}$ doit être utilisé pour chaque distance qui affecte le groupe.

BORD C				nt de réduction $\Psi_{c,V}$ rre silico-calcaire
Dimensions	M8	M10	M12	M16
50	0,60			
60	0,70	0,6		
70	0,80	0,70	0,6	
80	0,90	0,80	0,68	
90	1,00	0,90	0,76	0,60
100		1,00	0,84	0,68
120			1,00	0,84
140				1,00


MULTI-MAX


Résine chimique vinylester pour fixation dans les maçonneries creuses

CODE:

060040

Caracteristiques teciniques								
Dimensions	Prof. ancrage min.	Ø perçage	Profondeur perçage	Ø filetage	Longueur min. tige filetée	Ø extérieur iD-ALL/Tamis	Longueur totale iD-ALL/Tamis	Couple de serrage
	(mm) h ef	(mm) do	(mm) h o	(mm) d	(mm)	(mm) d _{nom}	(mm) L s	(Nm) T inst
iD-ALL + tige M8	65	16	70	8	76 + t _{fix}	16	70	3 (1)
iD-ALL + tige M10	65	16	70	10	78 + t _{fix}	16	70	3 (1)
Tamis Ø20 + tige M12	85	20	90	12	98 + t _{fix}	20	85	3 (1)
Tamis Ø15 + tige M8	130	15	135	8	138 + t _{fix}	15	130	3 (1)
Tamis Ø15 + tige M10	130	15	135	10	140 + t _{fix}	15	130	3 (1)
Tige M8	80	10	80	8	-	10	110	3 (1)
Tige M10	80	12	80	10	-	20	130	3 (1)
Tige M12	80	14	80	12	-	30	160	3 (1)
MULTI-MAX Résine vii	nylester car	touche deux	composant	s 410 ml			CODE :	060047

MULTI-MAX Résine vinylester cartouche deux composants 280 ml Codes des tamis et tiges dans notre catalogue.

Caractéristiques techniques

Temps de prise avant application d'une charge

Température	Temps max. de manipulation	Temps de polymérisation
20°C < T ≤ 30°C	4 min	45 min
10°C < T ≤ 20°C	6 min	60 min
5°C < T ≤ 10°C	12 min	90 min
O°C < T≤ 5°C	18 min	180 min
-5°C < T≤ 0°C	-	360 min

^{[1] 2} Nm dans les briques creuses OPTIBRIC PV 3+ et dans les blocs de béton creux.

APPLICATION

- Enseignes
- Echafaudages
- Tableaux électriques
- Radiateurs
- Sabots de charpente
- Gaines de ventilation climatiques
- Retours de garde-corps
- Stores bannes
- Prises d'escalades amovibles
- Echelles métalliques
- Mains courantes
- Haubanages de poteaux et conduites
- Cloisons amovibles

Charges recommandées matériaux creux (N_{rec}, V_{rec}) en kN

$$N_{\text{rec}} = \frac{N_{\text{Rk}} *}{\gamma_{\text{M.}} \gamma_{\text{F}}}$$

$V_{rec} = \frac{V_{Rk} *}{\gamma_{M.\gamma F}}$

TRACTION

CISA	ILL	.EM	ENT
------	-----	-----	------------

Dimensions	iD-/	ALL	Tamis Ø20X85 Ø15X13		K130	
	M8 M10		M12	M8	M10	
Blocs en béton creux B 40	$0 ext{ (}f_b \geq 6$	6.0 N/m	m²)			
N _{rec}	0,57		0,43	0,4	43	
Briques creuses OPTIBRI	C PV 3+	$(f_b \ge 9.$	O N/mm ²)		
N _{rec}	0,4	43	0,71	0,43		
Maçonneries creuses POI	ROTHE R	M GF R	20 Th+ (f _b	≥ 9.0 N	J/mm²)	
N _{rec}	0,25 0,71		0,3	34		
Maconneries creuses POROTHE RM GF R37 Th+ $(f_h \ge 9.0 \text{ N/mm}^2)$						
N _{rec}	0,	34	0,25	0,5	57	
4.4 0.5						

 $[\]gamma_F=1.4$; $\gamma_M=2.5$

CISAILLEMENT							
	iD-A	M10	Ø20X85 M12	(130 M10			
V _{rec}	0,7	71	0,57	0,8	36		
V _{rec}	0.4	13	1,00	0,0	34		
V _{rec}	1,1	14	0,86	1,0	00		
V_{rec}	0,2	25	1,14	0,4	43		

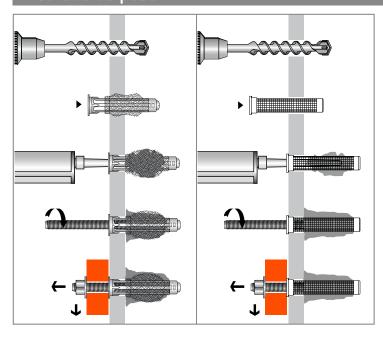
Charges recommandées matériaux plein (N_{rec}, V_{rec}) in kN

TRACTION

Dimensions	M8	M10	M12
h _{ef}	80	80	80
Silico calcaire			
N _{Rec}	3,4	3,4	3,4
Maçonneries			
N _{Rec}	2,0	2,0	2,0

 $N_{RK} = N_{Rd} \times \gamma_M$ où $\gamma_M = 2.5$

 $N_{RD} = N_{Rec} \times \gamma_F \circ \hat{u} \gamma_F = 1,4$

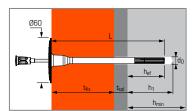

CISAILLEMENT

Dimensions	M8	M10	M12
h _{ef}	80	80	80
Silico calcaire			
V _{Rec}	2,5	2,5	2,5
Maçonneries			
V _{Rec}	2,0	2,0	2,0

 $V_{RK} = V_{Rd} \times \gamma_M$ où $\gamma_M = 2.5$

 $V_{RD} = V_{Rec} \times \gamma_F \circ \hat{u} \gamma_F = 1.4$

Méthode de pose



Cheville à frapper avec clou d'expansion en acier pour fixation de polystyrène expansé (EPS) et panneaux de laine minérale pour isolation thermique extérieure par enduit (ETICS)

EAD 330196-01-0604

Caractéristiques techniques

Dimensions	Prof.	Epaisseur. de l'isolant	Epaisseur support	Profondeur de perçage	Ø perçage	Longueur totale cheville	Code
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Tête Ø60
	h _{ef}	t _{fix} A	h _{min}	h ₁ + t _{tol}	do	L	
8X75/40		40				75	054904
8X95/60		60				95	054905
8X115/80		80				115	054906
8X135/100		100				135	054907
8X155/120		120				155	054908
8X175/140	25	140	100	35	8	175	054909
8X195/160	20	160	100	30	0	195	054910
8X215/180		180				215	054911
8X235/200		200				235	054912
8X255/220		220				255	054913
8X275/240		240				275	054914
8X295/260		260				295	054915
Rondelle plastique PA	6.6 Ø90						057655
Rondelle plastique PA 6.6 Ø140							054929

APPLICATION

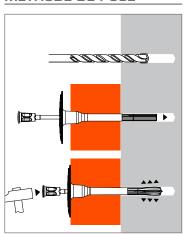
 Fixation d'isolants rigides sur matériaux pleins ou creux

MATIÈRE

- Corps: polypropylène(1)
- Clou d'expansion: acier zingué 5 μm
- Conductivité thermique: 0.002 W/k
- Rigidité de la tête: 0,7 kN/mm
- Plage de température d'utilisation: ≥0°C

⁽¹⁾Attention: la cheville doit être protégée des rayons U.V. par un écran (enduit, lambrissage, etc.)

Charges limites ultimes (N_{Rd}) et charges recommandées (N_{rec}) pour une cheville en pleine masse en kN


$$N_{Rd} = \frac{N_{Rk}}{\gamma_{M}}$$
 (1) Valeurs issues de l'ETE $N_{rec} = \frac{N_{Rk}}{\gamma_{M} \cdot \gamma_{M}}$ TREK

_

Anker Ø8	N_{Rd}	N _{rec}
Basis materiaal h _{ef} : 25 mm		
Béton (C12/15 tot C50/60)	0,35	0,25
Briques terre cuite - EN 771-1- fbk = 20 Mpa ⁽¹⁾	0,45	0,32
Briques silico-calcaire - EN 771-2 - fbk = 12 Mpa ⁽¹⁾	0,45	0,32
Blocs de béton creux - EN 771-3 - fbk = 4 Mpa (1)	0,45	0,32
Blocs pleins en héton léger - EN 771-3 (LAC) - fbk = 4 Mpa (1)	0,45	0,32
Briques terre cuite creuses - EN 771-1 - fbk = 10 Mpa ⁽¹⁾	0,45	0,32
Briques terre cuite à perforations verticales - NORM B6124 - fbk = 10 Mpa ⁽¹⁾	0,45	0,32
Béton cellulaire P2-400 - EN 771-4 - fbk = 2 Mpa (1)	0,15	0,11
$\gamma_{M} = 2 \; ; \; \gamma_{F} = 1,4$	0,25	0,18
ÖD		

(1) Pour pose dans autres types de matériaux faire pratiquer des essais sur site

MÉTHODE DE POSE

Conditions de distances

DANS BÉTON

	Distance mini. entre chevilles et bords (mm) et épaisseur mini. du béton (mm)				
S _{min}	C _{min}	h _{min}			
100	100	100			

 $^{^{\}mbox{\scriptsize (1)}}$ Voor andere materialen kunnen testen uitgevoerd worden

Cheville à visser avec clou d'expansion en acier pour fixation d'isolants rigides (montage à fleur ou à coeur) pour isolation thermique extérieure par enduit (ETICS)

ETE 18/1102 EAD 330196-01-0604

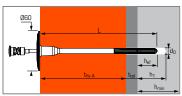


Schéma A: pose à fleur

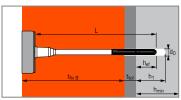
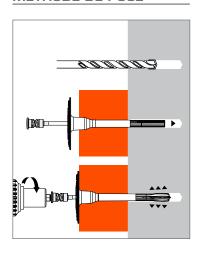


Schéma B: e à coeur avec capuchon

• Pose en surenfoncement:(cf. schéma B) Outil de pose: code 054901 Capuchon blanc EPS: code 054897 Capuchon gris EPS: code 054898 Capuchon laine minérale: code 054899

APPLICATION


- Fixation d'isolants rigides sur matériaux pleins ou creux
- Fixation démontable

MATIÈRE

- Corps: polypropylène⁽¹⁾
- Clou d'expansion: acier classe 5.8 5 µm empreinte Torx T30
- Conductivité thermique: 0.002 W/k
- Rigidité de la tête: 0.9 kN/mm
- Plage de température d'utilisation: -30°C à +80°C

[1] Attention: la cheville doit être protégée des rayons U.V. par un écran (enduit, lambrissage, etc.)

MÉTHODE DE POSE

Caractéristiques techniques

Dimensions	Prof.	Epais	seur.	Epaisseur	Profondeur	Ø	Longueur	Code
	ancrage	de l'is	solant	support	de perçage	perçage	totale	
							cheville	
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Tête Ø60
	h _{ef}	t _{fix} A	t _{fix} B	h _{min}	h1+ ttol	do	L	
8X95/60		60	80				95	054870
8X115/80		80	100				115	054871
8X135/100		100	120				135	054872
8X155/120		120	140				155	054873
8X175/140		140	160				175	054874
8X195/160		160	180				195	054875
8X215/180	25*	180	200	100	35	8	215	054876
8X235/200	20	200	220	100	35	0	235	054877
8X255/220		220	240				255	054878
8X275/240		240	240				275	054879
8X295/260		260	280				295	054880
8X315/280		280	300				315	054881
8X335/300		300	320				335	054882
8X355/320		320	340				355	054883
Rondelle plastique PA 6.6 Ø90						057655		
Rondelle plastique								054957
Rondelle plastique	PA 6.6 Ø140							054929

^{*}hef = 65 mm pour les matériaux de catégorie E

Résistances caractéristiques (N_{Rk}) in kN

TRACTION

Dimensions Ø8	N_{Rk}
Supports h _{ef} : 25 mm	
Béton (C12/15 tot C50/60)	1,5
Briques terre cuite - EN 771-1- fbk = 20 Mpa (1)	1,5
Briques silico-calcaire - EN 771-2 - fbk = 12 Mpa ⁽¹⁾	1,2
Blocs de béton creux - EN 771-3 - fbk = 4 Mpa (1)	1,5
Blocs pleins en béton léger - EN 771-3 (LAC) - fbk = 4 Mpa (1)	1
Briques terre cuite creuses - EN 771-1 - fbk = 10 Mpa ⁽¹⁾	0,75
Briques terre cuite à perforations verticales - NORM B6124 - fbk = 10 Mpa (1)	0,6
Béton cellulaire P2-400 - EN 771-4 - fbk = 2 Mpa (1)	0,6

(1) Pour pose dans autres types de matériaux faire pratiquer des essais sur site

Charges limites ultimes ($N_{ m Rd}$) et charges recommandées ($N_{ m rec}$) pour une cheville en pleine masse en kN

 $N_{Rk}\,{}^{\text{(1)}}$ (1) Valeurs issues de l'ETE $N_{rec} =$ γΜ. γΕ **TRACTION**

Dimensions Ø8	N_{Rd}	N _{rec}
Supports h _{ef} : 25 mm		
Béton (C12/15 tot C50/60)	0,75	0,54
Briques terre cuite - EN 771-1- fbk = 20 Mpa (1)	0,45	0,54
Briques silico-calcaire - EN 771-2 - fbk = 12 Mpa ⁽¹⁾	0,6	0,43
Blocs de béton creux - EN 771-3 - fbk = 4 Mpa (1)	0,75	0,54
Blocs pleins en béton léger - EN 771-3 (LAC) - fbk = 4 Mpa (1)	0,5	0,36
Briques terre cuite creuses - EN 771-1 - fbk = 10 Mpa ⁽¹⁾	0,375	0,27
Briques terre cuite à perforations verticales - NORM B6124 - fbk = 10 Mpa (1)	0,3	0,21
Béton cellulaire P2-400 - EN 771-4 - fbk = 2 Mpa (1)	0,3	0,21

 $\gamma_M=2$; $\gamma_F=1.4$ $^{(1)}$ Pour pose dans autres types de matériaux faire pratiquer des essais sur site

Conditions de distances

DANS BÉTON

	Distance mini. entre chevilles et bords (mm) et épaisseur mini. du béton (mm				
S _{min}	C _{min}	h _{min}			
100	100	100			

> Notities			

SOUHAITEZ-VOUS

- > COMMENT TROUVER LE POINT DE VENTE LE PLUS PROCHE?
- > FAIRE RÉALISER UN ESSAI DE TRACTION?
- > UN CONSEIL TECHNIQUE?
- > UNE FORMATION?

SPIT PASLODE se réserve le droit de modifier les caractéristiques de ses produits à tout moment. Certains équipements ou accessoires présentés sur les photos sont disponibles en option mais ne sont pas inclus dans le programme de vente standard.

© Copyright 2022 ITW Belgium Aucun droit ne peut être tiré de cette information. Sous réserve d'erreurs d'impression.

ITW BELGIUM B.V.B.A. I 't Hofveld 3 I 1702 Grand-Bigard

contactez-nous
sur info@itw-belgium.com

POINT DE VENTE

